High Ca2+ permeability of a peptide-gated DEG/ENaC from Hydra
نویسندگان
چکیده
Degenerin/epithelial Na(+) channels (DEG/ENaCs) are Na(+) channels that are blocked by the diuretic amiloride. In general, they are impermeable for Ca(2+) or have a very low permeability for Ca(2+). We describe here, however, that a DEG/ENaC from the cnidarian Hydra magnipapillata, the Hydra Na(+) channel (HyNaC), is highly permeable for Ca(2+) (P(Ca)/P(Na) = 3.8). HyNaC is directly gated by Hydra neuropeptides, and in Xenopus laevis oocytes expressing HyNaCs, RFamides elicit currents with biphasic kinetics, with a fast transient component and a slower sustained component. Although it was previously reported that the sustained component is unselective for monovalent cations, the selectivity of the transient component had remained unknown. Here, we show that the transient current component arises from secondary activation of the Ca(2+)-activated Cl(-) channel (CaCC) of Xenopus oocytes. Inhibiting the activation of the CaCC leads to a simple on-off response of peptide-activated currents with no apparent desensitization. In addition, we identify a conserved ring of negative charges at the outer entrance of the HyNaC pore that is crucial for the high Ca(2+) permeability, presumably by attracting divalent cations to the pore. At more positive membrane potentials, the binding of Ca(2+) to the ring of negative charges increasingly blocks HyNaC currents. Thus, HyNaC is the first member of the DEG/ENaC gene family with a high Ca(2+) permeability.
منابع مشابه
Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons.
Acidic extracellular solution activates transient H(+)-gated currents in dorsal root ganglion (DRG) neurons. The biophysical properties of three degenerin/epithelial sodium (DEG/ENaC) channel subunits (BNC1, ASIC, and DRASIC), and their expression in DRG, suggest that they might underlie these H(+)-gated currents and function as sensory transducers. However, it is uncertain which of these DEG/E...
متن کاملunc-8, a DEG/ENaC Family Member, Encodes a Subunit of a Candidate Mechanically Gated Channel That Modulates C. elegans Locomotion
Mechanically gated ion channels are important modulators of coordinated movement, yet little is known of their molecular properties. We report that C. elegans unc-8, originally identified by gain-of-function mutations that induce neuronal swelling and severe uncoordination, encodes a DEG/ENaC family member homologous to subunits of a candidate mechanically gated ion channel. unc-8 is expressed ...
متن کاملDEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature.
Several DEG/ENaC cation channel subunits are expressed in the tongue and in cutaneous sensory neurons, where they are postulated to function as receptors for salt and sour taste and for touch. Because these tissues are exposed to large temperature variations, we examined how temperature affects DEG/ENaC channel function. We found that cold temperature markedly increased the constitutively activ...
متن کاملInsight into DEG/ENaC channel gating from genetics and structure.
The founding members of the superfamily of DEG/ENaC ion channel proteins are C. elegans proteins that form mechanosensitive channels in touch and pain receptors. For more than a decade, the research community has used mutagenesis to identify motifs that regulate gating. This review integrates insight derived from unbiased in vivo mutagenesis screens with recent crystal structures to develop new...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 140 شماره
صفحات -
تاریخ انتشار 2012